《明史》卷九· 张廷玉
太阳盈缩平立定三差的来源冬至前后是太阳运行速度减速结束加速开始的象限,到春分共八十八日九十一刻,取整数。
切分为六段,每段各有十四日八十二刻。
取整数。
各段实测到的太阳运行度数,与平均速度相减,余数就是积差。
将各段的累积差敷,除以各段的累积日敷,就是各段的日平均差。
将各段的日平均差,舆后一段的日平均差相减,就是一差。
将一差舆后一段的一差相减,就是二差。
将第一殷的日平差四百七十六分二十五秒作为泛平积。
将第一段的一差三十八分四十五秒,减去第二段的二差一分三十八秒,余三十七分o七秒,就是泛平积差。
另将第一段的二差一分三十八秒折半,得六十九秒,就是泛立积差。
将泛平积差三十七分o七秒,加上泛平积四百七十六分二十五秒,共得五百一十三分三十二秒,就是定差。
将泛平积差三十七分O七秒,减泛立积差六十九秒,余三十六分三十八秒作为被除数,用每段日数十四日八十二刻为除数与之相除,得二分四十六秒,就是平差。
以泛立积差六十九秒作为被除数,用每段日敷作为除数与之相除二次,得三十一微,就是立差。
夏至前后是太阳运行速度加速结束速减速开始的象限,到秋分共九十三日七十一刻,取整数。
切分为六段,每段各有十五日六十二刻。
取整数。
各段实测到的太阳运行度数,与平均速度相减,余数就是积差。
推算日平差、一差、二差的方法,与减速结束加速开始的象限相同。
将第一段的日平差四百五十一分九十二秒作为泛平积。
将第一段的一差三十六分四十七秒,减去第一段的二差一分三十三秒,余三十五分十四秒,就是泛平积差。
另将第一段二差一分三十三秒折半,得六十六秒五十微,就是泛立积差。
将泛平积差三十五分十四秒,加上泛平积四百五十一分九十二秒,共四百八十七分O六秒,就是定差。
将泛平差三十五分十四秒,减去泛立积差六十六秒五十微,余三十四分四十七秒五十微作为被除数,用每段日敷十五日六二作除敷与之相除,得二分二十一秒,就是平差。
将泛立积差六十六秒五十微作为被除数,用每段的日敷作为除数舆之相除二次,得二十七微,就是立差。
凡是求太阳运行度敷的增减,用所求时段的始末日数乘以立差,得数再加平差,再乘始末日数,得敷再减定差,余数再乘以始末日敷,就是增减的度敷的累积数。
太阳运行速度超过平均敷的时段以八十八日九O九二二五运行一个象限,低于平均敷的时候以九十三日七一二o二五运行一个象限。
在此象限以下焉初,在象限以上逆推减去半年剩下的是末。
盈初是从冬至往后顺推,缩末是从冬至往前逆推,它们距冬至的距离相同。
所以盈积的度敷相同。
缩初是从夏至往后顺推,盈末是从夏至往前逆推,它们距夏至的距离相同,所以缩减的度数相同。
盈缩招差,本来是一种象限的推算方法。
如太阳运行速度超过平均敷的时段,以八十八日九十一刻为一个象限,低于平均敷的时段,则以九十三日七十一刻为一个象限。
现在只作九个象限,是举此作为例子。
图中九行格子中的定差本敷,是被减数。
斜线似上的平差立差敷,是减敷。
斜残以下格子中的定差,是减后的余敷。
假如定差为一万,平差为一百,立差为一。
现在求第九象限的方法是,以象限敷九乘定差得九万作为被减数。
另外用平差,以九乘两次,得八千一百。
将立差用九乘三次,得七百二十九。
两敷相加得八千八百二十九作为减数。
将被减数和减数相减,余数焉八万一千一百七十一,就是第九象限的累积数。
另外一种方法是,以九乘平差得九百,又以九乘立差两次得八十一,合并两数得九百八十一作为减数,定差一万作为减数,两数相减,余九千零一十九,就是第九象限末位所写的定差。
遭时再以九乘余数,得八万一千一百七十一,就是第九象限的累积数,与前一种方法的得敷相同。
只是前一种方法是先乘后减,后一种是先减后乘,其道理是一样的。
按:《授时历》对于日月五星运行度数的增减,都是用垛积招差的方法来计算,这种方法巧妙地与天体的运行相合,与西方人用小轮推算的方法,殊途同归。
然而传世的各种算术书,都没有记载这种方法,《历草》记载了这种方法,但没有谈它的道理。
宣城梅文鼎为此作了图解,对于平差、立差的道理,垛积的方法,都有解说阐明其所以然。
有专书流行于世,不能详细抄录,只是摘录了《招差图说》,以说明他创立这种方法的大意而已。
凡是推算敷据衰盈初缩末:将立差三十一微,乘以六,得一秒八十六微,就是加分立差。
将平差二分四十六秒,加倍,得四分九十二秒,加入加分立差,得四分九十三秒八十六微,就是平立合差。
将定差五百一十三分三十二秒,减平差二分四十六秒,再碱立差三十一微,剩五百一十分八十五秒六十九微,就是加分。
缩初盈末:将立差二十七微,乘以六,得一秒六十二微,就是加分立差。
将平差二分二十一秒,加倍,得四分四十二秒,加入加分立差,得四分四十三秒六十二微,就是平立合差。
将定差四百八十七分零六秒,减平差二分二十一秒,再减立差二十七微,余四百八十四分八十四秒七十三微,就是加分。
以上所推算的,都是象限第一天的数据。
推算次日,都以加分立差,加平立合差,就是次日的平立合差。
以平立合差减这一日的加分,就是次日的加分。
盈积和缩减都相同。
将加分累计,就是盈积和缩减的累计数,其敷据都见于数据表。
月亮运行快慢平立定三差的来源月亮运行一周焉二十七日五十五刻四六,测量分焉四象,每象各分七段,四象二十八段,每段十二限,每象八十四限,共三百三十六限,而四象合为一周。
以四象作为除数,舆旋转一周的日敷相除,每象得六日八八八六五,再分为七段,每段下实测月亮运行快慢的数据,再与平均速度相减,以求积差。
以各段的积差作为被除数,以各段的积限作为除数与之相除,就是各段、限的平均差。
将各段、限的平均差,与后段相减就是一差。
将一差与后段一差相减就是二差。
将第一段的限平差十分七二六作为泛平积。
将第一段一差四十七秒七六,减第一段二差九秒三六,余三十八秒四十微,就是泛平积差。
另外将第一段的二差九秒三十六微折半,得四秒六十八微,就是泛立积差。
以泛平积差三十八秒四十微,加泛平积十分七二六,得十一分一十一秒,就是定差。
将泛平积差三十八秒四十微,减泛立积差四秒六十八微,余三十三秒七十二微作为被除数,以十二限作为除数与之相除,得二秒八十一微,就是平差。
将泛立积差四秒六十八微作为被除数,以十二限作为除数,除二次,得三微二十五纤,就是立差。
凡是求月亮运行快慢,都以所求时段的起始日数乘每日十二限二十分,以在第八十四限以下马初,在此以上逆推减去一百六十八限的余数为末。
各根据初、末的限乘立差,得敷再加平差,再乘以初、末的限敷,得数再藏定差,余数再乘以初、末限敷,就是快慢的累积敷。
其初限是从最慢最快处顺推至后,末限是从最慢最快处逆推至前,它们舆最慢最快处的距离相同,所纵盈积的度数也相同。
月亮和太阳设立的方法相同,但太阳以定气确定象限,所以盈积和缩减的敷量不同。
月亮以平均速度确定象限,所以快慢原理相同。
推算数据表的方法:将立差三微二十五纤,乘以六,得十九微五十纤,就是损益立差。
将平差二秒八十一微,加倍,得五秒六十二微,再加损益立差十九微五十纤,共得五秒八十一纤,就是初限平立合差。
从这里开始逐次加上损益立差,就是每限的平立合差。
到第八十限之下,累积至二十一秒四一五,就是平立合差的最大值。
八十一限之下平立合差为一秒七八o九,八十二限之下平立合差焉一秒七八O八,到八十三限之下,平立合差将益分即增益数和损分即减损数从中分开,是益分的终结。
八十四限之下的平立合差,也将损分和益分从中分开,是损分的开始。
到八十六限下的平立合差,也是二十一秒四一五,从这里开始逐次减去损益立差,则每限的平立合差,到末限与初限相同。
将定差十一分十一秒,减去平差二秒八十一微,再减去立差三微二十五纤,余十一分零八秒十五微七十五纤,就是加分定差,也就是初限的损益分。
将损益分与逭一限的平立合差相加或相减,就是下一限的损益分。
将益分累加,损分累减,就是这一限下的迟疾度。
以八百二十分为一限的日率,累加八百二十分就是每限的日率。
以上都详见敷据表。
凡是五星都各自依据实际测量,将它们的运行度敷分焉八殷,来推求积差,大致和太阳月亮的方法一样。
将各段所测到的积差敷作为被除数,以每段的日数作为除数与之相除,就是泛平差。
以各段的泛平差舆下一段的泛平差相减,就是泛平较。
又以泛平较舆下一段的泛平较相减,就是泛立较。
将第一段的泛平较三十九秒一六二一,减这一段的泛立较六秒二四二一,余三十二秒九一九九,就是初段的平立较。
加上初段的泛平差十分五六七八零一,共得十分八十九秒七十微,就是定差。
秒设置在葛位。
将初段平立较差三十二秒九一九九,减泛立较的一半三秒一二一一,余二十九秒七九八八,除纵该段日敷十一日五十刻,得二秒五十九微十二纤,就是平差。
将泛立差的一半三秒一二一一,以该段日敷作为除数舆之相除两次,得二微三十六纤,就是立差。
以上是木星平立定三差的来源。
火星盈初缩末立差相减,平差相减。
泛平较前多后少,应加上泛立较。
将初段的泛平较六分一三九八四七二九六八七五,加泛立较十三秒一九七九二一八七五,得六分二七一八六五一五六二五,就是初日的下平立较。
将初段的泛平差八十二分二十秒六五七三四八四三七五,加初日的下平立较六分二七一八二六五一五六二五,得八十八分四十七秒八十四微,就是定差。
将初日的下平立较六分二七一八二六五一五六二五,加泛立较的一半六秒五九八九六o九三七五,得六分三三七八一六一二五作为被除数,以该段的日敷相除,得八十三秒十一微八十九纤,就是平差。
将泛立较的一半六秒五九八九六o九三七五,用该段日敷七日六十二刻五十分作为除数除两次,得十一微三十五纤,就是立差。
火星缩初盈末平差负诚,立差相减。
取比较均匀的泛立较三十九秒五八二一三七五,减去一段的泛平较十三秒二六四八三一二五,余二十六秒三一七三零六二五就是减得的差敷,再加一段的泛平差二十九分七一三一二六九三七五,得二十九分九十七秒六十三微,就是定差。
将减得的差数二十六秒三一七三零六二五,用该段的日敷十五日二十五刻相除,得一秒七二五七二五。
再将泛立较的一半十九秒七九一零六八七五,用该日数相除,得一秒二九七七t五。
两敷相加得三秒零二微三十五纤,就是乎差。
将泛立较的一半十九秒七九一零六八七五,用该段日敷十五日二五作除数除二次,得八微五十一纤,就是立差。
以上是火星平立定三差的来源。
土星盈历立差相加,平差相减。
将第一段的泛平较,减同段的泛立较,余五十秒九一七九七五,就是平立较。
用平立较,加本段泛平差,得十五分十四秒六十一微,就是定差。
将平立较,减泛立较的一半三秒七四二六七五,余四十七秒一七五三,再用本段日敷十一日五十刻相除,得四秒一十微二十二纤,就是平差。
将泛立较的一半,用本段的日敷除二次,得二微八十三纤,就是立差。
土星缩历立差相加,平差相减。
将第一段的泛平较,减同段的泛立较,余二十一秒七七二三七五,就是平立较。
用平立较加本段泛平差,得十一分o一秒七十五微,就是定差。
将平立较,减泛立较的一半四秒三七七四七五,余十七秒三九四九,用本段日数十一日五十刻作为除数相除,得一秒五十一微二十六纤,就是平差。
将泛立较的一半,用本段日数怍为除数除二次,得三微三十一纤,就是立差。
以上是土星平立定三差的来源。
将第一段的泛平较,与本段泛立较相减,余一秒八六八一七五就是平立较,再加泛平差,得三分五十一秒五十五微,就是定差。
将平立较与泛立较的一半一秒八六四七二五相减,余三十四纤,再以本段日敷十一日五十刻作为除数与之相除,得三纤,就是平差。
将泛立较的一半,用本段日数作为除数与之相除二次,得一微四十一纤,就是立差。
以上是金星平立定三差的来源。
水星立差相加,平差相减。
方法与金星相同,求得定差三分八十七秒九十微,平差二十一微六十五纤,立差一微四十一纤。
以上是水星平立定三差的来源。
以上五星,都以立差作为末端,以平差作为根本,以定差作为总括。
五星各自根据段次取得立差,木土金水四星加上平差,只有火星碱去平差,各自根据日数的积累而得到积差,五星都城去定差,又各以积日相乘,得到各自寅测的度数。
五星的积日,都用比率,除以一周天的日敷得三百六十五度二十五分又四分之三。
各以周天度数的四分之一焉一象限,只有火星用象限的三分之一,与一象限相减焉盈初缩末限,加一象限为缩初盈末限。
之所以将度称为日,是为了各自取盈缩历乘除的方便,实际上积得的北极出地度即北纬四十度九十五分作为半弧背,用前述的割圆弧矢法,推得出地半弧弦为三十九度二十六分,这就是大三斜中股。
将测到的冬至夏至时的黄道赤道内外度二十三度九十分为半弧背,用前述的方法推算出内外半弧弦为二十三度七十一分。
又是黄道赤道大勾,又是小三斜弦。
将内外半弧弦自乘作为勾的幂,天圆半径自乘作为弦的幂,二幂相减,余数开方就得到股。
又用半径减股,余四度八十一分,就是冬至夏至出入矢,也是黄道赤道内外矢。
以夏至日太阳南至地平的七十四度二十六分半作为半弧背,求得太阳下至地平的半弧弦五十八度四十五分。
半径六十度八十七分半,是大三斜中弦。
将大三斜中股三十九度二十六分,乘以冬至夏至内外半弧弦二十三度七十一分作为被除数,用半径六十度八十七分半作为除数与之相除,得十五度二十九分,就是小三斜中股。
又是小股。
以小三斜中股十五股二十九分,被太阳下至地平半弧弦五十八度四十五减去,余四十三度十六分,就是大股。
以出入矢四庋八十一分,被半径六十度八十七分半减去,余五十六度o六分半,就是大股弦。
将大股弦乘以小股十五度二九作为被除数,用大股四十三度一六作为除数舆之相除,得十九度八十七分作为小弦,也就是冬至夏至出入差半弧弦。
根据冬至夏至出入差半弧弦,按法则求得冬至夏至出入差半弧背为十九度九十六分十四秒。
将冬至夏至出入差半弧背十九度九六一四,用冬至夏至黄道赤道内外半弧弦二十三度七十一分与之相除,得八十四分十九秒,就是度差分。
求黄道每度昼夜的时刻。
方法是:将所求的每度黄道赤道内外半弧弦,用冬至夏至出入差半弧背与之相乘作为被除数,用冬至夏至黄道赤道内外半弧弦作为被除数与之相除,就是每度出入差的半弧背。
另一种方法是:将黄道赤道内外半弧弦,用度差八十四分一十九秒与之相乘,也得到出入差半弧背。
在半径内减黄道赤道内外矢,即赤道二弦差,秋分昼夜五十刻诚去它,得四十一刻七十二分半,就是白画的时刻。
以加倍所得的时刻加五十刻,得五十八刻二十七分半,就是夜晚的时刻。
白昼减,所以夜晚加,其余的与此相仿。
敷,也就是度数。
求冬至夏至差股及出入差。
方法是:将所测以上《历草》所记载的昼夜时刻,是大都即燕京的晷影漏刻。
夏天白昼、冬天夜晚最长是六十一刻八十四分,冬天白昼、夏天夜晚最短是三十八刻十六分。
明迁都到燕京以后,不知道遵循沿用。
只是在正统己巳年奏准颁布历法用六十一刻,而受到群起非难。
景泰初年仍然恢复使用南京的时刻,到明代结束也役能改正。